

1

Practical Lab Manuals

WP1.1.1

“Comprehensive Embedded Software Security Evaluation

Against Fault Injection Attacks”

By Zahra KAZEMI

2

Table of Contents

Introduction.. 4

1. Hardware Attacks ... 4

2. Fault Injection Attacks.. 4

3. Clock Glitching Attack ... 4

4. Application Level Analysis of Fault Effects .. 5

5. The lab objectives ... 7

Session 1: Setup Preparation.. 8

6. An Introduction to Chipwhisperer Evaluation Platform... 8

7. An Introduction to ChipWhisperer-Lite ... 9

8. Practical Lab: ChipWhisprer-Lite Quick-Start Guide ... 10

Hardware Installation... 10

Software Start Guide.. 10

9. Student Activity: a simple example of cock glitching fault injection attack 13

First Scenario: normal functionality with the wrong password 13

Second Scenario: normal functionality with the correct password............................... 14

Third Scenario: Bypassing the password checking with a wrong password 14

Session 2: High-Level Analysis of Important Patterns and Functions 18

1. Main Control Flow Patterns and Their Evaluation Methods...................................... 18

Unconditional Branches... 18

Decision Making or Conditional Branches.. 19

Iterative patterns .. 19

2. C-Functions and Their Evaluation Methods... 20

Type Casting Functions ... 20

3

String Manipulation Functions .. 20

Memory-Based Functions .. 20

Searching and Sorting Functions ... 21

3. Student Activities: Experimental Evaluaiton of Patterns and Functions 22

Evaluating different pattrens.. 22

Comparing the security of different patterns ... 22

Two-step password checking function .. 22

Reviewing the important C-Functions ... 22

Find the glitch configurations to attack different functions ... 23

Compare the security of different functions .. 23

Session 3: Evaluation of an Embedded Application... 24

1. An Introduction to Sec-Pump Application ... 24

2. Student Activities: Exploit the Vulnerabilities of Sec-Pump Application 24

Evaluation of the Sec-Pump’s Authentication Module ... 24

Evaluation of the Sec-Pump’s Drug Manager Module.. 25

Securing the Sec-Pump’s Authentication Module ... 26

Securing the Sec-Pump’s Drug Manager Module ... 26

Final Solution: Random Delays and Make the Execution Timing Unpredictable 27

4

Introduction

1. Hardware Attacks

In general, the attacks against IoT embedded devices can be classified into three main categories,

including 1) Network, 2) Software, and 3) Hardware Attacks. In practice, an attack can employ any or

all of these approaches. In principle, the Network-based Attacks could be applied remotely at any point of

the interconnected IoTs. Various studies show IoTs are susceptible to Network Attacks such as Denial of

Service and Spoofing. The second class of security attacks against IoTs is applied at the software level.

They can be applied at various software abstraction layers, such as high levels and low levels. For instance,

some High-level Software Attacks are brute force attacks that target an application that consists of a pair of

input/output to get authenticated or to reveal the information. Other examples aim to inject malware or

manipulate the machine-level code at lower levels and hijack the application's execution flow. Besides

software attacks, numerous security threats exist against the user-accessible targets named Hardware

Attacks. Hardware attacks become critical when the attacker can have direct physical access to measure the

device operating parameters or can tamper with the external inputs of the targeted embedded device.

2. Fault Injection Attacks

Fault attacks are the noticeable type of physical attacks, in which the expected and secure behavior of

the targeted devices is liable to be jeopardized. Fault Injection Attacks have been designed and introduced

in various methods, such as 1) By manipulating the inputs of the device (such as clock or voltage); 2) By

stressing the target by changing its surrounding conditions (such as raising the temperature); 3) By emitting

energy rays (such as electromagnetic or laser). They can either modify the process of software execution or

the stored values inside the memory locations.

3. Clock Glitching Attack

Clock-based fault injection is a low-cost attack that can be applied by the attacker to devices

supplied with an external clock. If the target uses an internal clock signal, this method is often not

applicable.

In the clock glitching method, the attacker generates glitches in the clock signal. The induced glitches

produce extra edges in the clock signal, resulting in an erroneous output as the timing inequality has been

violated. Figure.1 shows a typical clock signal in which a glitch is induced. In this figure, T represents the

normal clock period, and Tglitch is the width of the glitch signal. As it can be seen, an extra edge appears in

the clock signal. Another important parameter is Tmin, which is equal to the reciprocal of maximum

frequency. In order to have erroneous behavior, Tglitch should be less than Tmin.

5

Figure 1. Violating Critical Path Delay by Insertion of Additional Positive Clock Edge

Multiple clock glitch parameters (Figure.2) must be tuned, such as:

• Glitch Delay: This parameter shows where to insert the glitch after the positive edge of a

clock cycle.

• Glitch Width: This parameter describes the width from the point indicated by Glitch Delay

to the right.

• Glitch Temporal Location: This variable shows the clock cycle (i.e., number of cycles) to

insert the glitch after the trigger signal's positive edge.

Figure 2. Clock Glitch Parameters

4. Application Level Analysis of Fault Effects

Discovering the impacts of physical FIA is not always straightforward. So, one needs to understand

the FIA effects and their propagation through different levels. Figure.2 shows an example of the propagation

of an injected fault through layers of an embedded system along with its effects on the target.

6

Figure 3. Fault propagation through different layers

These effects can be classified into different categories:

• Faults at Circuit Level: The physical stress on any target interface leads to transient electrical

faults like transient voltage glitches or current spikes at the circuit level resulting in gate faulty

behavior.

• Faults at Micro-Architectural Level: Transient electrical faults might be captured by the

latches and flip-flops in the system's data or control paths, resulting in erroneous micro-

architectural states or data.

• Faults at Software/Application Level: Faulty values captured by different micro-

architectural blocks would cause errors in the control or data flow of the running software. In

other words, a fault at the micro-architectural level manifests itself as a deviation in the correct

instruction flow or as a faulty operand or opcode at the software level. Note that the faults at

the software level can be exploited in different

In general, the exploited vulnerabilities at the application level can be modeled as 1) Control-Flow

Corruptions (CF-Corrupt) and/or 2) Data-Flow Corruptions (DF-Corrupt) at the application level.

The CF-Corrupt can occur by disrupting the intended order of instructions, branches, or statements of the

embedded software. Accordingly, several works have shown that even non-invasive FIAs such as

clock/voltage glitching attacks can lead to CF-Corrupt by skipping or repeating one instruction or by

replacing that with another instruction. Other CF-Corrupt instances happen when the evaluation step of a

conditional branch has been skipped, and the incorrect branch is taken. FIAs can alter the conditional branch

instructions, which are used to implement loops and change conditions in security checks of embedded.

The software-based countermeasures have significant performance overhead, and they cannot guarantee

complete code integrity against fault injection attacks. However, in many non-critical cases, they can

provide a good trade-off between hardware cost and security.

7

5. The lab objectives

In this course, our objectives are:

1. To install and investigate an experimental evaluation platform (Chipwhisperer)

2. To understand the software-level evaluation process of different C-functions and patterns

3. To use chipwhisperer and high-level evaluation approaches to identify the security

vulnerabilities of an IoT application (Sec-Pump as an example)

8

Session 1: Setup Preparation

6. An Introduction to Chipwhisperer Evaluation Platform

ChipWhisperer is an open-source toolchain that makes learning about fault injection and side-channel

attacks easy and affordable. In the following, we are going to focus on the clock glitching part to evaluate

the security of our embedded software.

There are different available types of Chipwshiperer boards in the market; For instance:

1) CW1200 ChipWhisperer-Pro (CWPro)

2) CW1173 ChipWhisperer-Lite (CWLite)

3) CW1101 ChipWhisperer-Nano (CWNano)

9

7. An Introduction to ChipWhisperer-Lite

In this lab, we are going to use CW1173 ChipWhisperer-Lite (CWLite) from NewAE Technology

since it serves as a good middle ground between the full feature-set of the ChipWhisperer-Pro, and the

affordability of the ChipWhisperer-Nano.

The ChipWhisperer-Lite typically comes with two main parts: a multi-purpose capture instrument, and

a target board. The target board is a standard microcontroller (XMEGA or ARM) which you can implement

algorithms onto.

The ChipWhisperer-Lite, as the name suggests, features the ChipWhisperer-Lite capture hardware.

Its datasheet can be found on Mouser: https://www.mouser.ca/datasheet/2/894/NAE-CW1173_datasheet-

1859842.pdf

Product Highlights:

• Synchronous (capture board and target board both use the same clock) capture and glitch

architecture, offering vastly improved performance over a typical asynchronous oscilloscope

setup

• 10-bit 105MS/s ADC for capturing power traces

• Can be clocked at both the same clock speed as the target and 4 times faster

• +55dB adjustable low noise gain, allowing the Lite to easily measure small signals

• Clock and voltage fault generation via FPGA-based pulse generation

• XMEGA (PDI), AVR (ISP), and STM32F (UART Serial) bootloader built-in

https://www.mouser.ca/datasheet/2/894/NAE-CW1173_datasheet-1859842.pdf
https://www.mouser.ca/datasheet/2/894/NAE-CW1173_datasheet-1859842.pdf

10

8. Practical Lab: ChipWhisprer-Lite Quick-Start Guide

Hardware Installation

The hardware setup is fast and easy! simply use a micro USB cable to connect the ChipWhisperer-Lite

to your computer.

Once that's done, you can open the installed version of Chipwhisperer on your computer. If it is not

installed yet, please follow this link to install it on Windows/Mac or Linux OS:

https://chipwhisperer.readthedocs.io/en/latest/index.html#overview

Software Start Guide

 The software interface of the ChipWhisperer is basically based on a Python 3 package. In order to

connect to the hardware, Jupyter is used. Jupyter also is used as a code editor.

Some reminders for using a Jupyter notebook:

➢ Ctrl+Enter to execute the contents of a cell.

➢ Shift+Enter to execute the contents of a cell and move to the next cell.

➢ a cell is running when the symbol [*] is present to its left. When the execution is complete,

this symbol becomes [N], where N indicates that this cell is the Nth to have been executed.

➢ For more practice on Jupyter, please see “Introduction to jupyter notebook. ipynb”.

 In order to open the software interface, you need to open a web browser (e.g., Chrome-firefox) and

type in 127.0.0.1:8888 or localhost:8888 and then enter your password (initial password has been set to

“vagrant”):

https://chipwhisperer.readthedocs.io/en/latest/index.html#overview

11

In jupyter, you can either go through the prepared version called “practical_lab_session1.ipynb” or

create your own item and write the codes inside that:

Definition of variables:

We define here the global variables that will be useful for the project. The last CW_PATH is to be

adapted to your ChipWhisperer installation: it specifies the directory where the module is installed.

Firmware Compilation:

We start by compiling the firmware that we are going to attack. The execution of the cell below

should end with the following message:

12

Here is an example of our firmware compilation:

Target Connection:

Executing the cell below should display the following message:

“INFO: Found ChipWhisperer😍!”

 If not, the card is not recognized by the PC. No need to go any further until you have solved the

problem.

Here is an example of our target connection:

Programming of the microcontroller and reset of the card:

Here, we are going to program the microcontroller with the firmware that we compiled above and

write the previously compiled code in the flash memory of the microcontroller. Then, we reset the card

before using it. After the reset, the microcontroller will load the firmware from its flash memory and run it.

Executing the cell below should give the following message: “Verified flash OK”.

Note that, whenever you want to reset the target you can use the code block below:

13

9. Student Activity: a simple example of cock glitching fault injection attack

At the end of this session, the goal is to use Chipwhisprer to perform a simple clock glitching attack

against a password checking function. This function is described below:

This function accepts a correct PIN and refuses a false PIN. Since our goal is to be accepted

with a wrong PIN, we have not implemented the functionality of locking the system after 3 wrong

PINs. The correct password is “correctpass”.

First Scenario: normal functionality with the wrong password

We start by checking that an incorrect password is indeed refused. The password is defined in

the pw variable and explicitly encoded in ascii. We communicate via a serial link with the card.

We, therefore, send the password "wrongpass" to the card, preceded by the letter p with the

simpleserial_write command.

 We then read the response from the card, with the start by sending the letter r with the

simpleserial_read_witherrors command. The result obtained is stored in the variable val. The result

obtained is a data structure. The field that interests us is rv (return value) which indicates the return

value obtained following the sending of the password. Here, since we sent an incorrect password,

we should have rv=0. We check that this is indeed the case by displaying FAILED.

14

Second Scenario: normal functionality with the correct password

This time we send the correct password ("correctpass"), following the same procedure as

above. Here, since we sent the correct password, we should have `rv=1`. We verify that this is

indeed the case by displaying `SUCCESS`.

Third Scenario: Bypassing the password checking with a wrong password

After having validated the nominal operation of our code, we will try to disturb it by

injecting a fault into a clock glitch.

The cell below sets the parameters required for fault injection (width: glitch width, offset:

glitch offset, ext_offset: glitch delay). It is therefore these three parameters that we will have to

adjust. The call to print displays the parameters.

• Note: The goal in the following is going to be to find the width and offset values that

lead to a successful attack. In order to reduce the space of parameters to be explored,

we are going to fix the glitch delay setting by performing multiple consecutive clock

glitches. For this, we will set the repeat parameter to 20 for example, to glitch 20

consecutive clock cycles:

15

• Note: Sometimes the fault injection attack can result in the crash of the card. In this

case, it will be necessary to do a *reset*. We define here a function that is responsible

for performing a *reset* of the card in case it no longer responds.

• Note: We need also to filter the *warnings* emitted during the execution of the

characterization code so as not to fill the terminal output too much.

In the following, we are trying to explore the clock glitch offset and width for the successful

fault injection attack:

 Based on the needed precision, you choose the value ranges to explore: width: possible values

are in the range [0:50]. If the glitch width is so small, a glitch would not even be detected. On the

other hand, a very large glitch width will result in a glitch that will have no effect because the

instruction will have time to execute normally. Possible values for glitch offset are in the range of

[-50,50]. It is better to limit ourselves to negative values so that the glitch arrives before the ris ing

edge. It should be mentioned that very small glitch offsets will not be detected. On the other hand,

a very large glitch offset will result in a glitch that will have no effect because the instruction will

have time to execute normally. It's up to you to set the correct intervals in the cell below and then

run it.

16

To identify the parameters giving a successful attack, we can draw a graph from the data

collected The next cell plots this scatter plot, from the `glitches` and `resets` lists constructed

previously.

Here is an example of plotted graph:

We have now identified the faulty values for the width and offset parameters. To perform a

fault injection attack on a given code, we only have to adjust the delay parameter:

17

When the broken is being printed, it means that you were successful in bypassing the password

checking function with the wrong password.

18

Session 2: High-Level Analysis of Important Patterns and

Functions

In this session, our goal is to explain test scenarios and approaches to be able to catch the fault effects

at the software level. The following focuses on analyzing the most prominent patterns in the program

control flow and common functions.

1. Main Control Flow Patterns and Their Evaluation Methods

In this part, to present the evaluation approach, the important control flow statements are categorized

into three main classes, namely: 1) Unconditional Branches, 2) Decision Makings, and 3) Iterative Controls.

Table.1 shows these statements with some C code examples.

Table 1. Important Control Flow Statements

Unconditional Branches

An unconditional branch is a basic control flow and contains an outgoing edge from a node in a control

flow graph (Figure. 4 (a)). In order to catch the fault effect on an unconditional branch, we need to insert a

checkpoint (like in Figure. 4 (b)). and then run the program in the presence of the clock glitching attacks.

Figure 4 Control Flow Evaluation for Unconditional Branch

19

When CP1 was activated, the injected fault did not affect the correct execution of the branch,

and when the CP2 was set, it showed the branch was corrupted. When none of the checkpoints are

activated, it implies that the PC register contains an incorrect instruction memory address

(represented as X).

Decision Making or Conditional Branches

The second important category of control flow patterns is the decision-makings such as (if-else) which

contains a decision node with two control branches (Figure.5 (a)). The conditional control branches are

merged after executing the statements of the selected branch (white circles). In order to evaluate these

patterns against clock glitching attacks, we need to first set the condition to a state which leads to a known

result. Then, we need to insert checkpoints to catch the fault effects and monitor the consequences. For

example, in Figure.5 (b) then CP1 and CP2 are inserted to monitor the fault effects. In this example, it is

expected that the condition is false, so when the fault injection is unsuccessful, the CP2 is activated. When

the CP1 is set, one can detect the skipped conditional test.

Figure 5 Control Flow Evaluation of Single Conditional Branch

Iterative patterns

Iterative control statements are playing an important role in the correct application execution. For

example, the while loop is one of the iterative control statements. First, we need to set an always true

condition such as while (1), then insert the CP1 as a watchdog flag to detect the skip from the loop. In this

case, if CP1 becomes active, it demonstrates that the fault injection has manipulated the correct execution

of the loop.

20

Figure 6. Control Flow Evaluation of an Iterative Control

2. C-Functions and Their Evaluation Methods

This section aims to explain more general evaluation scenarios to exploit the vulnerabilities of standard

high-level C functions. First, the standard embedded C-functions are categorized, including 1) Type

Casting, 2) String Manipulation, 3) Memory-Based, and 4) Searching and Sorting Functions.

There are different evaluation scenarios for different C-functions. In the following, we will explain

these approaches to evaluate these functions.

Type Casting Functions

These functions are used to perform data type conversion from one type to another. Two

important examples are atoi and itoa, which convert string to int and int to string, respectively.

Evaluation Method: to test the Type Casting Functions, an (input, output) pair is selected and the

function runs in the presence of FIA. If the generated result differs from the expected one, a successful

attack is reported.

String Manipulation Functions

These functions are used to modify the strings. There are various functions in this class,

including strcp and strncpy to copy a string to another.

Evaluation Method: For the Sring Manipulation Functions that transfer or copy data from a source

to a destination, the results can be compared to detect any possible mismatch.

Memory-Based Functions

These functions manipulate the data inside the memory and are specifically vital for a system's

initialization. Important examples of these functions are memset and memcpy, which are used to

21

set all the bytes in a block of memory to a particular value and to copy a block of data from a

source address to a destination address.

Evaluation Method: The Memory-Based Functions are assessed by feeding them with known

values and checking the specific memory location(s) related to the operation. A fault-affected function will

result in an incorrect memory address or value.

Searching and Sorting Functions

 These functions include examples such as bsearch and qsort. A bsearch sorts an array and

then searches the desired record based on the binary search tree algorithm. A qsort function sorts

an array of numbers. To evaluate it, each element is weighed at the output array.

Evaluation Method: The output of the Searching Functions can be observed when a known array is

given to the function, and when they return a null value, it means that the attack was successful. To evaluate

the Sorting Functions, each element of the output array is weighed. Then, when the sorted array is generated,

the sum of all the multiplication of weights and related elements of the arranged array are compared. If

these two are not equal, it means wrong sorting.

22

3. Student Activities: Experimental Evaluaiton of Patterns and Functions

Evaluating different pattrens

• Using the project that you have done in the first session, try to evaluate and report the

successful clock glitch configuration for three important patterns: 1) unconditional

branch, 2) simple conditional branch (if-else), and 3) nested conditional branch (nested

ifs)

Note: you need to draw the graph for successful glitch width and offset

Comparing the security of different patterns

• Based on the obtained result of the first activity, try to explain and compare the

security of different patterns.

 Two-step password checking function

• Try to extend the first session example and write a two-step password checking (

with nested conditional branch) and compare the results.

Reviewing the important C-Functions

Table.2 summarizes different categories of the standard library functions with their normal

behavior.

• Please complete the last column for their faulty behavior in front of FIA. As an

example, the faulty behavior of atoi function has been given.

Table 2. The behavior of different high-level C-functions

C-Function Normal Behavior Faulty behavior in front of FIA

atoi Convert an ASCII array to an integer value Returns un-expected and wrong integer value for

a known ASCII array

itoa Convert an integer value to an ASCII array …

memset Saves a value in memory

23

memcpy Compares the values in two different

memory locations

strcpy Copies from one character array to another

strncpy Copies a portion (n-bit) of one character

array to another

strchr Finds the first occurrence of a character in a

string

strtod Converts string to a double value

qsort Sorts an input array

bsearch Searches an array to find a value

 Find the glitch configurations to attack different functions

• Try to evaluate all the functions in the table.2 using Chipwhisprer and report all the

successful glitch configurations.

Compare the security of different functions

• Based on the obtained results from the previous activity, try to compare the security

of different functional categories.

• Which category is the most difficult one to be analyzed?

• From the string manipulation category, can you compare the exploited vulnerability

of strcpy and strncpy? Which one is more vulnerable?

• Try to explain your comparison by studing these functions.

24

Session 3: Evaluation of an Embedded Application

Different high-level analysis methods have been proposed in the previous session. In this

session, our goal is to apply these approaches to assess an embedded application which is more

complex and has different modules. Then, we need to show how a clock gliching attack can affect

the credential information, the data/control flow integrity, and the availability of an embedded

application. As a case study we will focus on a medical IoT application named Sec-Pump

application. This example shows the potential vulnerabilities of a critiacal application which result

in dangrous consequences for the patients. The final goal of this part is to propose a few software-

level examples tomitigate the mentioned impacts on an application’s security level.

1. An Introduction to Sec-Pump Application

An excellent example of a critical embedded application exists as an infusion pump installed

in hospitals to deliver doses of drugs to patients and monitor their health status. Sec-Pump is an

open-source and security oriented medical application was selected to model the behavior of a life-

critical infusion pump. Sec-Pump has been designed to be used for both research and teaching

activities related to embedded system security and runs on both ARM and RISC-V

microprocessors.

All the necessary information can be found in “ https://github.com/r3glisss/SecPump ”.

Please, try to carefully read this github page and download the code. You can download the

version to be executed on ARM processor. However, if you have access to risc-v target board of

Chipwhisprer Pro., you can also use it.

2. Student Activities: Exploit the Vulnerabilities of Sec-Pump Application

In this session, you need to evaluate different parts of the sec-pump application.

 Evaluation of the Sec-Pump’s Authentication Module

Sec-Pump has a single-step authentication process. When the Sec-Pumpboots, it enters an

infinite loop for password entry. If an attacker can bypass this password checking step, he/she can

access the entire system.

https://github.com/r3glisss/SecPump

25

• Try to find the related code block to the authentication module. The try to perform

clock glitching attack using chipwhisprer and report the configurations for the

successful attacks.

Evaluation of the Sec-Pump’s Drug Manager Module

DrugManagement is another critical module that manipulates the central data/control flows of

the Sec-Pump application. To evaluate this module, first, the main functions and variables in this

module are determined. The Drug Management module’s core functions are 1) Create-Cure, 2)

Modify-Cure, and 3) Delete-Cure. These three functions operate on three variables: 1) Cure-Name,

2) Cure-Volume, and 3) Cure-Duration. Cure-Volume and Cure-Duration directly impact the Sec-

Pump’s critical functionalities because they have a direct relation with the time and amount of

injected medicine. Consequently, they need to be protected against any kind of attacks, including

FIAs.

• First, try to review the Create-Cure part. It forms a flexible mechanism to initiate a

cure with a Cure-Name to receive the inputs (Cure-Volume, and Cure-Duration) and

to initialize them.

• Which functions in this Create-Cure part seem to be vulnerable?

• The strcpy function copies the string from the name to the Cure-Name variable and

returns the copied string. Try to evaluate the strcpy function in this part and report the

successful attack’s configurations.

• What are the results of the faulty behavior of strcpy in the Sec-Pump’s expected

functionality?

• The atoi function in the Create-Cure module converts a string, such as entered volume

and duration, to a number (specifically an integer). Try to evaluate one of the atoi

functions in this part and report the successful attack’s configurations.

• What are the results of the faulty behavior of atoi in the Sec-Pump’s expected

functionality?

• Try to review the Delete-Cure part. This part is responsible for eliminating a cure and

its related data (Cure-Name, Cure-Volume, and Cure-Duration) from memory.

Erasing the Cure-name is done by filling its memory block with zeros. Accordingly, a

C library function named memset has been called to copy 0x0 to the 32 first characters

26

of the memory block where the Cure-Named is pointed to. Try to attack memset

function in the Delete-Cure part and report the successful attack’s configurations.

 Securing the Sec-Pump’s Authentication Module

It was shown that the single-step authentication module is vulnerable and may be bypassed

by a simple clock glitching FIA. Therefore, it is needed to use an alternative for it.

• Try to modify the authentication module and include a two steps authentication using

nested conditional branch. After performing the clock glithcing and reporting the

configurations for the successful attack, try to compare the results with the previous

task.

 Securing the Sec-Pump’s Drug Manager Module

In this part, some robust software-level alternatives are proposed to mitigate the impact of

existing vulnerabilities in different high-level instructions of the Drug-Management module.

One of the vulnerable functions in the Drug-Management module is the strcpy function.

Generally, it is used to copy a string fromthe source to the destinationwith a null character

termination. This operation does not specify the length of the copied string. The strcpy function in

the Drug Management module is used to copy "name" to a destination "cure.name". This

vulnerability originates from the fact that the strcpy operation continues to copy into the

destination location until it reaches the null character. In the presence of a clock glitch, the

processor may not have enough time to detect the transferred NULL character and continues to

copy the string. This is the reason behind the unexpected copied string in the curename of the Sec-

Pump.

• Try to suggest an alternative function for strcpy in Drug Management Module and

experimentally show that this alternative is less vulnerable against clock glitching

attack. (you can perform clock glithcing and compare the success rate of fault injection

attacks)

Another vulnerable function in the Drug-Management module is atoi. This function converts

a string into its integer numerical representation. The atoi function has been used in theDrug

27

Management module to convert the related ASCII string as an argument (e.g., Volume and

Duration values) to integer form. At some point, in the presence of clock glitching FIA, this

function returns an undefined integer or zero, which does not correspond to the received argument.

This faulty behavior can originate from the fact that this function works iteratively (convert

characters from lef to right), and in the presence of a clock glitch, it may miss one character and

return the first valid number that can be converted from the received string. Also, atoi expects a

null-terminated string as an input, and a clock glitch can affect the observation of the null character.

• Try to suggest an alternative function for atoi to increase the security of the sec-pump

application.

• Can we include redundancy to secure such functions? Try to add a redundant atoi

function and report the attack results. Then compare with the vulnerability of a single

atoi function.

Final Solution: Random Delays and Make the Execution Timing Unpredictable

Another solution for vulnerable function is to make the execution timing unpredictable. in

this case, the programmer needs to consider a loop with random delays. Like so, the probability

of successful synchronization for clockglitching FIA is too low.

• Try to add random delays in Authentication Module and compare with the initial

version.

• Try to add random delays in Drug Manager Module and compare with the initial

version.

