
Educational content for PUF
and PUF based computation

Amir Ali-pour

Université Grenoble Alpes (UGA)

EMNESS

Outline

1. Introduction to PUF
• What is PUF

• What are fields of utilizations of PUF in general

• Physical characteristic of PUF

• Commercial PUFs

2. PUF Categories and features
• Strong PUF

• Structures

• How it works (homework)

• Weak PUF
• Structures

• How it works (homework)

• Features of a good PUF
• Entropy, Reliability, Randomness, diffuseness, uniqueness

Assignment_1:

• Simulate a simple Arbiter PUF using Python/MATLAB

3. PUF based protocols
• Authentication

• How it works (homework)

• Key generation

• How it works (homework)

• Random Number generation

• How it works (homework)

Assignment_2:
• Implement an authentication protocol using the PUF simulation

4. Issues and challenges with PUF

• PUF model-building attacks

• How it works (homework)

• PUF side channel attacks

• PUF Fault injection attacks

• Replay Attack

Assignment_3 (optional):

• Model Arbiter PUF using Pytorch or Scikit-learn (python)

5. Existing solutions

6. Emerging topics of and around PUF

Project

Ch1: Introduction: What is PUF

(Input) (Output)

System On Chip

• Physically Unclonable Function:

• Is embodied in the physical characteristic of
silicon devices.

• Is represented as a randomized Fingerprint
generator

• PUF Fingerprint(s) are unique to each chip

• Key points:
❖Needs no NV Memory to store secret values

❖PUF physically is more tamper resistant than
NV memories. Since it is related to micro
process variations, if we tamper the PUF, we
destroy the micro features.

Ch1: Introduction: Fields of Utilization

IoT Smart Card Block Chain Smart Vehicles

• IoT edge device
authentication.

• Providing core values for
lightweight device-to-
device communication
encryption.

• Lightweight
implementation that
provides abundance of
fingerprints for
authentication.

• Encryption should be
strong but can be
possible including
some post-processing
mechanisms.

• The very large CRP
space of PUF is the
major benefit here.

• Can serve as a reliable
and secure primitive
for authentication.

https://www.tibco.com/reference-

center/what-is-the-internet-of-things-iot

https://www.digi.com/blog/post/what-is-

connected-vehicle-technology-and-use-cases

https://www.cbinsights.com/research/what-

is-blockchain-technology/

Ch1: Introduction: Physical characteristic & process variation

https://www.coventor.com/paper/process-variation-analysis-of-device-performance-using-virtual-

fabrication-methodology-demonstrated-on-a-cmos-14-nm-finfet-vehicle/

https://www.researchgate.net/figure/Global-variation-

and-local-variation-For-local-variation-the-variance-in-

length-depends_fig8_2982185

https://www.semanticscholar.org/paper/From-

Process-Corners-to-Statistical-Circuit-Design-

Dongaonkar-

Mudanai/3d734e03e8eea17851c8435a13433a61

9d35677b
http://www.vlsi-expert.com/2011/02/process-

variation-effects-on-design.html

❑Process variation causes
delay variation in signal
propagation.

❑ Inter-die variation leads to
minor characteristic
differentiations.

❑Minor characteristic
differentiations can be
aggregated into major
functional variations
detectable by fuzzy logic.

❑PUF is a derivative of such
phenomenon.

https://www.coventor.com/paper/process-variation-analysis-of-device-performance-using-virtual-fabrication-methodology-demonstrated-on-a-cmos-14-nm-finfet-vehicle/
https://www.researchgate.net/figure/Global-variation-and-local-variation-For-local-variation-the-variance-in-length-depends_fig8_2982185
https://www.semanticscholar.org/paper/From-Process-Corners-to-Statistical-Circuit-Design-Dongaonkar-Mudanai/3d734e03e8eea17851c8435a13433a619d35677b
http://www.vlsi-expert.com/2011/02/process-variation-effects-on-design.html

Ch2: Categories: Weak PUF: Example
➢Weak PUF: Generates few CRPs (Often

only 1 CRP with large dimensiality)

➢Example: Memory based PUF
➢ Example: Power up values of memory cells

before firmware allocation
➢ Limited number of fingerprints

At device
power up

1 0 1 1

0 0 1 0

0 1 0 1

1 0 1 0

0 1 1 0

1 0 1 1

0 0 1 0

0 1 0 1
1 0 1 0
0 1 1 0

=
Device

fingerprint

Power
up

Power
up

Uniqueness:

Ch2: Categories: Strong PUF & Example
➢Strong PUF: Generates very large number of CRPs.

➢Example: Arbiter PUF:

Uniqueness:

Device

fingerprint

Ch1: Introduction: Commercial PUFs

❑Intrinsic ID
❑Butterfly PUF: Apollo FPGA IP (hardware IP)

❑ SRAM PUF: QuiddiKey IP (hardware IP)

❑ https://www.intrinsic-id.com/physical-unclonable-function/

❑Enthentica
❑ FPGA PUF IP

❑ASIC PUF IP

❑ https://www.enthentica.com/about

❑PUFSecurity
❑ PUF as root of trust (PUFrt)

❑ PUF as part of Crypto Processor (PUFcc)

❑ PUF as a Secure Element (PUFse)

❑ https://www.pufsecurity.com/puf

❑NXP
❑Multiple PUF-based solutions

❑Check MCUXpresso SDK API

❑ https://mcuxpresso.nxp.com/api_doc/dev/2194/a00217.html

❑Secure-IC
❑ Securyzr

❑ PUF as a root of trust element

❑ https://www.secure-ic.com/products/issp/root-of-trust/
https://www.nxp.com/docs/en/white-paper/IOTSECWP.pdf

https://www.intrinsic-id.com/physical-unclonable-function/
https://www.enthentica.com/about
https://www.pufsecurity.com/puf
https://mcuxpresso.nxp.com/api_doc/dev/2194/a00217.html
https://www.secure-ic.com/products/issp/root-of-trust/

Ch2: Features of a Good PUF

Randomness [1]

❑Good randomness: when 0s and 1s in a CRP set are equally distributed.

❑Can also be described as uniformity of the 1s and 0s in a CRP set.

𝐻 = − log2max(𝑝, 1 − 𝑝) 𝑝 =
1

𝑁𝑟
෍

𝑖=1

𝑁𝑟

𝑏𝑖

Total number of
response bits

ith response bit in the set
of all response bitsFrequency of 1s

❑Ideal value for 𝑝 is 0.5

❑Consequently, the value of H is between 0 to 1. Ideal is close to 1.0

Ch2: Features of a Good PUF

Uniqueness [2]

❑Measures the uniqueness of PUF responses in-between instances of the same
PUF circuit design.

𝑈𝑘 =
2

𝑁(𝑁 − 1)
෍

𝑖=1

𝑁−1

෍

𝑗=𝑖+1

𝑁
𝐻𝐷 𝐼𝐷𝑖 , 𝐼𝐷𝑗

𝐿

PUF instance i PUF instance j

Size of the response
bit-vector

Uniqueness for the
kth challenge

❑Average uniqueness for K number of CRPs:

𝑀𝑈 =
1

𝐾
෍

𝑖=1

𝐾

𝑈𝑘

❑Average uniqueness is normalized between 0 to 1. Ideal value is 1.

Ch2: Features of a Good PUF

Diffuseness[3]

Measures how different are the set of responses from the same PUF instance to
different challenges.

𝐷 =
4

𝐾2 × 𝐿
෍

𝑙=1

𝐿

෍

𝑖=1

𝐾−1

෍

𝑗=𝑖+1

𝐾

(𝑏𝑖,𝑙 𝑋𝑂𝑅 𝑏𝑗,𝑙)

Size of the response
bit-vector

Number of CRPs

Diffuseness is normalized between 0 to 1. Ideal value is 1.

Response bit

Ch2: Features of a Good PUF

Reliability[4]

❑Measures the stability of the response given for each challenge in multiple
acquisitions.

❑Its measured for a CRP set.

𝑆 = 1 +
1

𝑁𝑐
෍

𝑘=1

𝑁𝑐

log2max(
σ𝑗=1
𝑁𝑎 𝑏𝑘,𝑗

𝑁𝑎
, 1 −

σ𝑗=1
𝑁𝑎 𝑏𝑘,𝑗

𝑁𝑎
)

Number of CRPs

Number of times a challenge is used

Response bit

❑The steadiness is measured between 0 to 1 and the ideal value is 1.

Ch2: Verification of Design using Simulation

Benefits of using PUF simulation:

Design Flexibility:

➢Allows Rapid testing

➢Allows early detection of security or
reliability flaws

Existing simulations

(See Appendix 1)

➢ Ruhrmair’s LR PUF simulation source[5]
- Arbiter and XOR Arbiter and Lightweight

Arbiter PUF simulator
- Link: http://www.pcp.in.tum.de/code/lr.zip

➢ PyPUF simulator source[6]
- Simulator for variations of Arbiter PUF
- Simulator for Bistable Ring PUF and

compositions
- Link: https://pypuf.readthedocs.io/en/latest/

PUF Design

PUF
simulation

Security &
Reliability
Evaluation

Implement
counter-

measures

http://www.pcp.in.tum.de/code/lr.zip
https://pypuf.readthedocs.io/en/latest/

Ch2: Assignment

Using Python or Matlab: Simulate a 64 stage Arbiter PUF

1- Use random number generator to generate the delay values of each element in the
design:

- Multiplexer

- Parallel Paths

- Crossing Paths

Make sure the delay values for each element class are normally distributed

Recommendation: For the random number generator use mean 0 and variance 1.

2- Connect the elements accordingly to build the main body of the PUF.

3- Develop a comparator at the end which compares the accumulated delay values of
the two competing paths. This is the arbiter at the end of the PUF.

4- Generate 10 instances using the simulator code.

5- Then generate 10,000 CRPs for each instance and measure the Randomness and
Diffuseness of each instance, and measure the Uniqueness of the PUF group.

Ch3: PUF Protocols: Authentication

• Enrollment: Saving CRPs of a PUF on server

• Authentication: Exchanging CRP to find a match on CRP database

Bob
(server)Tim

[ID,][ID,]

Introduce your device
Tim’s device

Ch3: PUF Protocols: Authentication

• Enrollment: Saving CRPs of a PUF on server

• Authentication: Exchanging CRP to find a match on CRP database

BobTim

Eve
(Trusted Third Party (ttp))

Ch3: PUF Protocols: Authentication: Example

➢Mutual authentication with exchanging
only challenge values [7]

➢Mutual authentication
➢ PUF-enabled device authenticates the

server

➢ Then, the server authenticates the PUF-
enabled device

➢𝑃𝑈𝐹 is an equivalent model of PUF
which exists on server.
➢ This model provides access to all the CRPs

that PUF can generate

➢ε and θ are minimum acceptable
thresholds of hamming distance
between challenge values C for server
authentication and challenge values B
for PUF-enabled device
authentication, respectively.

PUF-enabled
Device

Server

Initialize authentication

id

ci  TRNG() | I = 0 … m-1

C = {c0, c1 ,…, cm-1 }

R= {PUF(ci)i=0 … m-1}
C

ri = 𝑃𝑈𝐹 (ci)

R = {r0, r1 ,…, rm-1 }

c’i,1 TRNG()

c’i,2 TRNG() repeat until:

𝑃𝑈𝐹 (ci,1) XOR 𝑃𝑈𝐹 (ci,2) = ri

And HD (c’i,1 , c’i,2) > ε

C’ = {c’i,1, c’i,2}i=0,…,m-1

ai = 𝑃𝑈𝐹 (ci,1) | i = 0,1,…,m-1

A = {ai}i=0,…,m-1

C’
Abort if HD (c’i,1 , c’i,2) < ε

Abort if HD (c’i,j , ci) < ε

r’i = PUF(c’i,1) XOR PUF(c’i,2)

R’ = {r’i} = {r’0, r’1 ,…, r’m-1 }

Abort if HD (R’,R) > θ

ai = PUF(c’i,1)

bi,1  TRNG()

bi,2  TRNG() repeat until

PUF(bi,1) XOR PUF(bi,2) = ai

And HD (bi,1 , bi,2) > ε

B = {bi,1, bi,2}i=0,…,m-1

Abort if HD (bi,1 , bi,2) < ε

Abort if HD (bi,j , c’I,1) < ε

a’i =𝑃𝑈𝐹 (bi,1) XOR 𝑃𝑈𝐹 (bi,2)

A’ = {a’i} = {a’0, a’1 ,…, a’m-1 }

Abort if HD (A’,A) > θ

B

Ch3: PUF Protocols: Key Generation

• Enrollment: Save the initial readout of PUF as encryption key

• Key exchange: Deliver code offset of the encryption key to Tim to recover the original key

Bob
(server)Tim

[ID,][ID,]

Tim’s device

Code offset
Encryption key

[PUF]

Ch3: PUF Protocols: Key Generation

• Enrollment: Save the initial readout of PUF as encryption key

• Key exchange: Deliver code offset of the encryption key to Tim to recover the original key

Tim

[ID,]Request for key exchange

Bob
(server)

Tim’s deviceCode offset

PUF
Algorithm

[PUF]

Erroneous response

Ch3: PUF Protocols: Key generation: Example

➢ PUF-based key generation
using Fuzzy Extraction (FE)
for error correction [8]

➢m is the number of extracted
keys from PUF

➢After successful recovery it’s
expected ҧ𝑟 == ri

➢ ri and ҧ𝑟 are encryption keys

PUF-enabled
Device

Server
PUF-enabled

Device
Server

Initialize extraction

id

W = {PUF(ci)i=0 … m-1}

C

ci  TRNG() | I = 0 … m-1

C = {c0, c1 ,…, cm-1 }

W

mi  TRNG() | i = 0 … m-1

X = {Encode(mi) i=0 … m-1}

S = {(xi XOR wi)i=0,…,m-1}

H = {HASH(si,wi) i=0 … m-1}

R = {HASH(wi) i=0 … m-1}

Store {S,H,R}

Initialize recovery

id

ci, si, hi

ci  Select

from C

si  Select

from S

hi  Select

from H

w’ = PUF(ci)

x’ = w’ XOR si

ҧ𝑥 = Decode(x’)

ഥ𝑤 = ҧ𝑥 XOR si

Abort if HD (ഥ𝑤,w’) > t
തℎ = HASH(ഥ𝑤,si)

Abort if (തℎ != hi)

ҧ𝑟 = HASH(ഥ𝑤)

Recovery was successful

ri Select

from R

Extraction Phase Recovery Phase

Ch3: Assignment

Using the previously developed PUF simulator code, now Develop an
authentication protocol.

Before that, create a noise simulator which adds noise to the PUF CRP.

NOTE: A noise in PUF CRP ultimately leads to flipping the true response value
for a given challenge.

Then develop the authenticator which communicates with each PUF instance
and reads their CRP which is coped with noise. The Authenticator should be able
to:

1- Enroll first a certain amount of CRPs.

2- In mission mode, request for CRP from the PUF and compare the oracle CRP
with the re-captured CRP and vote for the authenticity.

Measure the success-rate of authentication for each device.

Ch4: Challenges: Instability

Device a

At time t:

0

1

At time t + Δt:

1

0

Device a

Challenge Ci Challenge Ci

Device a

Device a Device a

Power
up

Power
up

Fluctuation of response value over multiple close acquisitions

At time t + Δt + Δt :

Device a

0

1

Device a

Power
up

Device a

Challenge Ci

Ch4: Challenges: Aging

Device a

At time t:

0

1

Device a

At time t + Δt:

1

0

Device a

Challenge Ci

Challenge Ci

Device a

Device a

Device a

Power
up

Power
up

Transition from one state to
other over a period of time.

At t + Δt and over, the state
of the response is changed
for a long term.

Ch4: Challenges: Security: Cloning Attack

❑Goal is to build a digital clone
of the PUF[9]

❑Using the PUF model,
attacker can impersonate the
authentic user (Tim)

❑PUF model will have some
error in mimicking the PUF

❑Goal of training algorithm is
to reduce the mimicking error

❑Depending on the accuracy
goal and PUF complexity,
number of required CRPs for
training can differ

Bob
(server)Tim

PUF

[ID,][ID,]

Training
Algorithm

PUF model

ea
ve

sd
ro

p
p

in
g

CRPs

Similar CRP
characteristic

Hacker

Ch4: Challenges: Security: Helper Data Manipulation Attack

➢The goal of the attack is to make the guessing work of the encryption key
easier by manipulating the code offset and redirecting it to the PUF owner [10]

Tim

[ID,]Request for key exchange

Bob
(server)

Tim’s device
PUF

Algorithm

[PUF]

Erroneous response

Hacker
ea

ve
sd

ro
p

p
in

g
Manipulation

algorithmCode offset
Manipulated
Code offset

Ch4: Challenges: Security: Side Channel Attack

➢Similar to cloning attack, the goal is to build a digital
clone of the PUF[11]

➢Using the PUF model, attacker can impersonate the
authentic user (Tim)

➢The medium of auditing to capture CRP is through side
channel analysis

➢Various Side channel analysis options
➢ Power tracing

➢ Electromagnetic emission tracing

➢ Etc.

Tim

Training
Algorithm

PUF model

SC
A

CRPs

Similar CRP
characteristic

Attacker

PUF

Example of side channel analysis equipment

https://www.esynov.fr/accueil/banc-de-test-1

https://www.esynov.fr/accueil/banc-de-test-1

Ch4: Challenges : Security: Replay Attack

➢The goal of the attack is to reuse the
transmitted authentication packet to
impersonate the PUF owner (Tim). [12]

➢To prevent such attack, each time a new
session is created and a new fingerprint
is used.

➢To prevent replay attack, a large dataset
of fingerprints needs to be provided for
the server.

Bob
(server)Tim

PUF

[0xyV912l,ID,]

ea
ve

sd
ro

p
p

in
g

Hacker

Session id User id Fingerprint

Ch4: Challenges: Security: Fault Injection Attack

➢Similar to cloning attack and side
channel attack, the goal is to build a
digital clone of the PUF[13]

➢Using the PUF model, attacker can
impersonate the authentic user (Tim)

➢The main goal in this attack is to use
fault injection to accelerate the
training process.

➢Assumed that after fault injection,
fewer CRPs will be required to
generate the PUF model.

Tim

Accelerated
Training Algorithm

PUF model

SC
A

CRPs

Similar CRP
characteristic

Attacker

PUF

Fa
u

lt
 in

je
ct

io
n

Fault Model

Ch4: Assignment (optional)

Using the Arbiter PUF simulator developed in previous assignments:

Capture new CRP dataset from a selected PUF instance and attempt in modeling the
PUF using Python Machine Learning Libraries like Pytorch or Python (See Appendix
3 for suggested model specification).

Deliverables:

1- Create a predictive model and initialize its learning parameters and perform the
training in adequate amount of steps until convergence.

2- Monitor the prediction accuracy, and learning loss value at each training epoch
(training step). These values then need to be plotted (See Appendix 3 for an example
plot).

3- Observe the final prediction accuracy, and time of training.

4- Repeat this for every PUF instance that was simulated previously.

5- Report the minimum number of CRPs you used to achieve predicition accuracy
above 90%.

Ch5: Instability and Aging Solutions

➢Soft error correction can be done by Voting. This is suitable for authentication

➢Encryption keys need to be robust and error free. This requires robust error correction
algorithms such as Fuzzy Extraction (FE).

codeword

+

+

Decoder
+

[ID,]

BobTim

ECC + FE

[PUF]

Challenge Ci

Ri_1
Ri_2

Ri_3
Ri_n

Vote Ri

Voting

Ch5: Instability and Aging Solutions

Example for Voting solution
➢ r represents the voted value for the response of the given challenge

➢ t is the threshold of Hamming Weight (HW) of R set more than which means that R represents response value 1

➢ t' is the threshold of HW of R set less than which means that R represents response value 0

➢ r = X means that the response is considered unstable for the given challenge. During enrollment, such CRPs are discarded.

0 1 0 1 1 1. . .

0 1 0 1 1 0. . .

0 1 0 1 1 1. . .

0 1 0 1 1 1. . .

0 1 0 1 1 1. . .

0 1 0 1 1 1. . .

1

0

1

1

1

1

m=6 acquisition
of response
for the same

challenge vector

If
𝐻𝑊 𝑅

𝑚
≥ 𝑡 then r = 1

If
𝐻𝑊 𝑅

𝑚
≤ 𝑡′ then r = 0

If t′ <
𝐻𝑊 𝑅

𝑚
< 𝑡 then r = X

R setresponseChallenge vector

𝐻𝑊 𝑅 =5

𝑚=6
= 0.83 > t then r = 1Given 𝑡 = .75 and 𝑡′ = .35Example:

PUF

PUF

PUF

PUF

PUF

PUF

Ch5: Instability and Aging Solutions
Example for ECC + FE solution

0 1 0 1 1

PUF

Challenge vector

1

Server

0 1 0 1 11

Encoder

Random number

0 1 0 1 10 0 0 0 0 01

Response w

Codeword x

Response w

Code offset s

Server

0 0 0 0 01 PUF

0 0 0 1 10

Response w’

Code offset s

0 0 0 1 11

Decoder

0 1 0 1 10

Codeword x

Erroneous
Codeword x’

0 0 0 0 01

Code offset s

0 1 0 1 11

Response w

1 2Extraction Phase Recovery Phase

Ch5: Security Solutions and Countermeasures

❖Strong PUF

➢ Increasing complexity [14]

❖Weak PUF

➢ Protecting Public data [15][16]

➢Key recovery without helper data [17]

Ch6: Emerging Topics: ML and PUF Protocol

❑Authentication: DLA PUF[18]

❑PUF memory values are captured as PUF image

❑Each device has its own PUF image

❑The DNN model is responsible for recognizing the device according to the PUF image

Ch6: Emerging Topics: ML and PUF Protocol

• Challenge: CRP storage [19]

• A novel Solution: Machine Learning
• Training CRP should be compact

• Model prediction accuracy should be high

• Model storage size should be handlable

• CRP transmission during mission mode
should be secure

References

[1] Randomness

[2] Uniqueness

[3] Diffuseness

[4] Reliability (Steadiness)

[5] Ruhrmair simulator

[6] PyPUF simulator

[7] Idriss Authentication protocol

[8] Becker Robust FE Key Generation protocol

[9] PUF model building attack

[10] Becker helper data manipulation attack

[11] PUF side channel attack

[12] PUF replay attack

[13] PUF fault injection attack

[14] XOR Arbiter PUF

[15] PUF CRP poisoning

[16] PUF Helper Data Masking

[17] Our secure key exchange protocol

[18] Karimian’s DLA PUF protocol

[19] Our MDPI PUF enrollment method

Project
Implementing Memory PUF:

In this project, you will need a board with a micro chip on it which also has an on-board
memory.

Example of electric boards suitable for the project:

Then you need to implement a logic code which can observe the power-up values of a
designated section on the on-board memory before the firmware allocates and zeros the
section.

The code should then be able to transmit the power-up memory values to a verifier system.

The verifier can be coded into a MATLAB. MATLAB supports reading through the
designated universal ports on a computer. So you should define a handshake mechanism
between the MATLAB verifier and the board which prepares the transmission of the PUF
values from the board to the verifier.

At last step, you should collect 1000 captures of the designated section of the on-board
memory and store them on the verifier system (AKA the enrollment). You should be able to
do this for at least 3 boards.

Recommendation: Since 1000 captures is significant, you should develop an automated
mechanism to turn-on, read, and turn-off, and turn-on the board which performs the
enrollment all by itself. For this it is suggested you use relays and a separate code that handles
the automation.

Appendix 1: Python simulation of Arbiter PUF

…

Appendix 2: Memory PUF on embedded boards

…

Appendix 3: Effective ANN Models for PUF cloning

…

