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Security verification
Introduction

➢ Section requirements:

– Security primitives (encryption, hash, …)

– Design for Trust, Design for test, Design for Debug

– Functional verification (test plan, dynamic and static 

methods: equivalence checking, model checking …)

– Robustness evaluation (fault simulation, fault modeling, 

…)

– Fault Injection Attacks (FIA), Hardware Trojan (HT), 

Side Channel Attacks (SCA)
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Security verification
Introduction

➢ SoC integrate numerous primitives or services 

related to security

➢ Unauthorized or malicious use of these primitives or 

services can result in company trade secrets
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or Hash functions)
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Security primitives Services related to security
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Security verification
Introduction

➢ Security objectives are difficult to specify:

– which test plan? which coverage/success criteria?

– Test plan must include a large number of activities

➢ Security verification is still on the rise

– In the following, we focus only on the hardware-level 

security verification: RTL and gate-level netlist verification

• At these levels, security verification is very important (finding a 

bug latter generate higher costs = “rule of ten”)

• White box verification (rather than SoC level is more black box or 

grey box)  

• Overall security is a multi-stages and cross-layers problems
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Security verification
Introduction

➢ The steps for the security verification

1. Identification of vulnerabilities

2. Identification of security assets

3.Definition and formalization of security properties (for 

example using PSL)

4.Test plan definition

5.Test plan implementation
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Security verification
Introduction

➢ Security vulnerability examples:

– Designer mistakes => insecure implementation

– Rogue employee => manipulating hardware to facilitate 

obtaining security assets

– Untrusted third-party IP vendors => IP watching the bus to 

obtain information 

– EDA insecure optimizations => resource sharing containing 

secret information

– DfT functionalities => Unauthorized access to secret 

registers
[Fuzz, Penetration, and AI Testing for SoC Security Verification: Challenges and 

Solutions - FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 2022



Security verification
Introduction

Security Assets Security policies
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 List of information whose leakages 

can lead to catastrophic 

consequences

 On-device key

 Manufacture firmware

 On-device protected data

 Device configuration

 A set of requirements related to 

security assets

 Access restrictions

 Data/control flow restrictions

 HALT/OTS/DOS restrictions



Security verification
Introduction – security verification in a nutshell
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Functional verification

of security primitives

Dynamic analysis

Fuzz testing
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trojan vectors)
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Introduction – security verification in a nutshell

13

Robustness evaluation

(against FIA)
Leakage
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simulation
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checking

With specific

Fault attack models

Simulation
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In red, the new tasks for 
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Security verification 
Functional verification of security primitives – Dynamic analysis

➢ Fuzzing (or fuzz testing) is a testing technique 

that involves providing invalid/unexpected 

random inputs and monitoring the results for 

finding exceptions (crashes, corner coverage)

– Unexpected inputs can generate: buffer overflows, 

exceptions, race conditions, access violations, denial of 

service
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Security verification
Functional verification of security primitives – Dynamic analysis

➢ Blind fuzz = no feedback => low coverage

➢ Fuzzers generally use feedback (coverage, 

security property coverage) for evaluating the

cost function of genetic algorithms

➢ Examples of software fuzzers: American Fuzzy 

Lop (AFL) and Hongfuzz
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Security verification
Fuzzing architecture
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Security verification
Functional validation of security primitives – Dynamic verification

➢ Hackathon/pentesting (H/P): white-box hacking

to break security properties

– H/P definition: test methodology that propagates the effects 

of vulnerability to an observable point

➢ Hardware H/P: vulnerabilities in hardware can be 

purely hardware-oriented

– malicious hardware modification, side channel 

leakage, fault injection vulnerability

➢ RTL H/P is more important than post-silicon H/P as 

the silicon can not be patched
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Security verification
Functional verification of security primitives – Static verification

➢ Equivalence checking can help designers to 

confirm the desired functionalities

– Specification = implementation

– Nothing more and nothing less

➢ But this technique is limited to medium size 

circuits

➢ Model checking can also help designers to 

confirm the security properties
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Security verification
Functional validation of security primitives – Static verification

➢ The verification of the absence of Hardware Trojan 

is a difficult challenge

– Hardware Trojan (HT) are triggered by very rare conditions: 

hard to activate with a normal dynamic test

– Unused code identification approaches look for unused portions in a 

circuit description => this allows detecting HT

– At Silicon-Level, Side Channel Analysis (delay or power leakages) can 

also help detecting the HT even without triggering it
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Security verification
Robustness evaluation - introduction

➢ Fault Injection Attack (FIA) can modify the circuit 

functionalities (to break some security properties)

➢ It is possible to reuse functional safety verification or 

robustness evaluation techniques for detecting security 

vulnerabilities due to these attacks
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Security verification

Robustness evaluation – Fault model

➢ FIA can be simulated (or emulated) with specific 

fault models

– For glitch attacks (Clk/Voltage/EM): single or multiple 

faults in the FFs involved in the most critical paths

– For laser fault attacks (with localized effects): single or 

multiple faults in the FFs involved in the intersecting

logical cones



Security verification
Robustness evaluation – Fault model – Glitch fault attacks
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• Faults are more probable in FFs related to the most critical

paths

Clk glitch injection

• As Voltage Glith Attacks and EMA involve higher gate delays, then

more faults are probable in FFs related to the most critical paths

Fault model is:

no FF update
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Security verification

Robustness evaluation – Fault model – Laser fault attacks

Layout Fault Model [Athanasios Papadimitriou, PhD on « RTL Modeling of laser fault attacks for the 

evaluation of integrated secure circuit and countermeasure design », 2016

] • More gates in the logic cone more probability to inject a fault in the FF

• Cone intersections => multi-bits fault injections

• SEU or MBU or MCU

• Bit flip or bit set or bit 

reset
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Security verification
Leakage evaluation - introduction

➢ Side channel simple tests measure the 

information leakage from the design

➢ Does not require neither understanding the 

hardware design, nor attack model, nor realizing 

an attack

➢ The most known test is “Test Vector Leakage 

Assessment” (TVLA) (similar to T-test.)

This test can report that the DUT fails to provide 

the desired security level



Security validation
Leakage evaluation – TVLA
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 TVLA procedure:

1. Create 2 datasets Q1 and Q2, each with n instances of plain-text and both 

the same key.

 Q1: same plain-texts

 Q2: random plain-texts

2. Obtain n power traces (which can be estimated at the RTL level thanks to 

specific leakage models) for each dataset and compute the TVLA metric

3. If TVLA>4,5 => the device is not secure against side channel attack


