
2020-1-FR01-KA203-080184

WP3.3.1: Verification and Test of Secure Circuits

Vincent Beroulle Grenoble INP- UGA, Esisar

04/05/2023

Outline

1. Introduction

2. Hardware Functional Verification

1. Introduction

2. Simulation

3. Emulation & Prototyping

4. Formal verification

5. Security verification

3. Hardware Testing

4. HW/SW Co-verification

2

Security Verification

3

 This part has been funded by ERAMUS+ program, and AURA region through the

EMNESS project (with several European University)

References

4

 Bhunia, S., Ray, S., & Sur-Kolay, S. (Eds.). (2017). Fundamentals of IP and SoC

security. New York: Springer.

 Azar, K. Z., Hossain, M. M., Vafaei, A., Al Shaikh, H., Mondol, N. N., Rahman,

F., ... & Farahmandi, F. (2022). Fuzz, Penetration, and AI Testing for SoC

Security Verification: Challenges and Solutions. Cryptology ePrint Archive.

 Schneider, T., & Moradi, A. (2015, September). Leakage assessment

methodology. In International Workshop on Cryptographic Hardware and

Embedded Systems (pp. 495-513). Springer, Berlin, Heidelberg.

 Athanasios Papadimitriou, PhD on « RTL Modeling of laser fault attacks for the

evaluation of integrated secure circuit and countermeasure design », 2016

Security Verification Outline

Security verification

1. Introduction

2. Functional verification of security primitives

1. Dynamic analysis

1. Fuzzing

2. Hackaton/Pentesting

2. Static analysis

3. Robustness verification against FIA

1. Introduction

2. Fault models

1. Glitch fault attacks

2. Laser fault attacks

4. Leakage verification

5

6

Security verification
Introduction

➢ Section requirements:

– Security primitives (encryption, hash, …)

– Design for Trust, Design for test, Design for Debug

– Functional verification (test plan, dynamic and static

methods: equivalence checking, model checking …)

– Robustness evaluation (fault simulation, fault modeling,

…)

– Fault Injection Attacks (FIA), Hardware Trojan (HT),

Side Channel Attacks (SCA)

7

Security verification
Introduction

➢ SoC integrate numerous primitives or services

related to security

➢ Unauthorized or malicious use of these primitives or

services can result in company trade secrets

PUF or

TRNG

(Physically

Unclonable

Functions or

True

Random

Number

Generation)

Cryptographic cores

(Encryption/decryption

or Hash functions)

Design for

Trust

Design for

Test (DfT)

or for Debug

(DfD)

Security primitives Services related to security

8

Security verification
Introduction

➢ Security objectives are difficult to specify:

– which test plan? which coverage/success criteria?

– Test plan must include a large number of activities

➢ Security verification is still on the rise

– In the following, we focus only on the hardware-level

security verification: RTL and gate-level netlist verification

• At these levels, security verification is very important (finding a

bug latter generate higher costs = “rule of ten”)

• White box verification (rather than SoC level is more black box or

grey box)

• Overall security is a multi-stages and cross-layers problems

9

Security verification
Introduction

➢ The steps for the security verification

1. Identification of vulnerabilities

2. Identification of security assets

3.Definition and formalization of security properties (for

example using PSL)

4.Test plan definition

5.Test plan implementation

10

Security verification
Introduction

➢ Security vulnerability examples:

– Designer mistakes => insecure implementation

– Rogue employee => manipulating hardware to facilitate

obtaining security assets

– Untrusted third-party IP vendors => IP watching the bus to

obtain information

– EDA insecure optimizations => resource sharing containing

secret information

– DfT functionalities => Unauthorized access to secret

registers
[Fuzz, Penetration, and AI Testing for SoC Security Verification: Challenges and

Solutions - FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 2022

Security verification
Introduction

Security Assets Security policies

11

 List of information whose leakages

can lead to catastrophic

consequences

 On-device key

 Manufacture firmware

 On-device protected data

 Device configuration

 A set of requirements related to

security assets

 Access restrictions

 Data/control flow restrictions

 HALT/OTS/DOS restrictions

Security verification
Introduction – security verification in a nutshell

12

Functional verification

of security primitives

Dynamic analysis

Fuzz testing

(random test,

trojan vectors)

Hackaton

/Pentesting

Static analysis

Equivalence

checking

Model

checking

Security property verification

+

Hardware Trojan (or backdoors)

detection
In red, the new tasks

for security

verification

Use of abnormal

scenarios

Objectives

Security verification
Introduction – security verification in a nutshell

13

Robustness evaluation

(against FIA)
Leakage

evaluation

Fault

simulation
Static analysis

Equivalence

checking

Model

checking

With specific

Fault attack models

Simulation

with specific leakage models

In red, the new tasks for

security verification

14

Security verification
Functional verification of security primitives – Dynamic analysis

➢ Fuzzing (or fuzz testing) is a testing technique

that involves providing invalid/unexpected

random inputs and monitoring the results for

finding exceptions (crashes, corner coverage)

– Unexpected inputs can generate: buffer overflows,

exceptions, race conditions, access violations, denial of

service

15

Security verification
Functional verification of security primitives – Dynamic analysis

➢ Blind fuzz = no feedback => low coverage

➢ Fuzzers generally use feedback (coverage,

security property coverage) for evaluating the

cost function of genetic algorithms

➢ Examples of software fuzzers: American Fuzzy

Lop (AFL) and Hongfuzz

16

Security verification
Fuzzing architecture

FUZZER

U
U

T

CHECKE

R

Random Output Generator

Vectors Monitor

• Bit flipping/Mutations

• Long strings/Large integers

• « No rules »/Strange

scenarios

Observed behaviors:

• Crash (not at RTL or gate level)

• Hang/freeze

• Security property coverage

White/grey/black box fuzzing

Black box fuzzing

Feedback

White box fuzzing

Feedback

• Code coverage

• Security property

coverage

17

Security verification
Functional validation of security primitives – Dynamic verification

➢ Hackathon/pentesting (H/P): white-box hacking

to break security properties

– H/P definition: test methodology that propagates the effects

of vulnerability to an observable point

➢ Hardware H/P: vulnerabilities in hardware can be

purely hardware-oriented

– malicious hardware modification, side channel

leakage, fault injection vulnerability

➢ RTL H/P is more important than post-silicon H/P as

the silicon can not be patched

18

Security verification
Functional verification of security primitives – Static verification

➢ Equivalence checking can help designers to

confirm the desired functionalities

– Specification = implementation

– Nothing more and nothing less

➢ But this technique is limited to medium size

circuits

➢ Model checking can also help designers to

confirm the security properties

19

Security verification
Functional validation of security primitives – Static verification

➢ The verification of the absence of Hardware Trojan

is a difficult challenge

– Hardware Trojan (HT) are triggered by very rare conditions:

hard to activate with a normal dynamic test

– Unused code identification approaches look for unused portions in a

circuit description => this allows detecting HT

– At Silicon-Level, Side Channel Analysis (delay or power leakages) can

also help detecting the HT even without triggering it

20

Security verification
Robustness evaluation - introduction

➢ Fault Injection Attack (FIA) can modify the circuit

functionalities (to break some security properties)

➢ It is possible to reuse functional safety verification or

robustness evaluation techniques for detecting security

vulnerabilities due to these attacks

21

Security verification

Robustness evaluation – Fault model

➢ FIA can be simulated (or emulated) with specific

fault models

– For glitch attacks (Clk/Voltage/EM): single or multiple

faults in the FFs involved in the most critical paths

– For laser fault attacks (with localized effects): single or

multiple faults in the FFs involved in the intersecting

logical cones

Security verification
Robustness evaluation – Fault model – Glitch fault attacks

22

• Faults are more probable in FFs related to the most critical

paths

Clk glitch injection

• As Voltage Glith Attacks and EMA involve higher gate delays, then

more faults are probable in FFs related to the most critical paths

Fault model is:

no FF update

23

Security verification

Robustness evaluation – Fault model – Laser fault attacks

Layout Fault Model [Athanasios Papadimitriou, PhD on « RTL Modeling of laser fault attacks for the

evaluation of integrated secure circuit and countermeasure design », 2016

] • More gates in the logic cone more probability to inject a fault in the FF

• Cone intersections => multi-bits fault injections

• SEU or MBU or MCU

• Bit flip or bit set or bit

reset

24

Security verification
Leakage evaluation - introduction

➢ Side channel simple tests measure the

information leakage from the design

➢ Does not require neither understanding the

hardware design, nor attack model, nor realizing

an attack

➢ The most known test is “Test Vector Leakage

Assessment” (TVLA) (similar to T-test.)

This test can report that the DUT fails to provide

the desired security level

Security validation
Leakage evaluation – TVLA

25

 TVLA procedure:

1. Create 2 datasets Q1 and Q2, each with n instances of plain-text and both

the same key.

 Q1: same plain-texts

 Q2: random plain-texts

2. Obtain n power traces (which can be estimated at the RTL level thanks to

specific leakage models) for each dataset and compute the TVLA metric

3. If TVLA>4,5 => the device is not secure against side channel attack

